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Method of Analysis and Filtering Properties of
Microwave Planar Networks
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MEMBER, IEEE

Abstract—A method of analysis of planar microwave structures, based
on a field expansion in term of resonant modes, is presented. A first
advantage of the method consists in the possibility of taking into account
fringe effects by introducing, for each resonant mode, an equivalent model
of the structure. Moreover, the electromagnetic interpretation of the
filtering properties of two-port networks, particularly of the transmission
zeros, whose nature has been the subject of several discussions, is easily
obtaired. The existence of two types of transmission zeros, modal and
interaction zeros is pointed out. The first ones are due to the structure’s
resonances, while the second ones are due to the interaction between
resonant modes. Several experiments performed on circular and rectangu-
far microstrips in the frequency range 2-18 GHz have shown a good
agreement with the theory.

I. INTRODUCTION

FTER THE STUDY of the transmission properties
Aof microstrip lines, the great diffusion of microwave
integrated circuits has led to the analysis of general planar
circuits. To this purpose, analytical methods, applied to
structures of simple geometry [1}H{3], and numerical
methods, apt to the study of more complex geometries
[4]-[6], have been developed. In both cases a magnetic
wall model has been adopted for the structure because of
the formidable boundary value problems. In such a way,
however, one not only neglects the dispersion properties
of the circuit, which are due to fringe effects, but often
obtains erroneous results [7].

To overcome this difficulty, in the case of step discon-
tinuities, i.e., of structures with separable geometry in
rectangular coordinates, Menzel and Wolff [8] have re-
cently proposed a method of analysis based on the correc-
tion of the magnetic wall model by means of frequency
dependent effective parameters. However, it must be ob-
served that effective parameters depend not only on the
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The authors are with the Istituto di Elettronica, Universita di Roma,
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frequency, but also on the field distribution inside the
structure. It is sufficient to instance the disk resonators for
which Wolff and Knoppik [9] have shown a frequency
dependent equivalent model to exist for each resonant
mode, in such a way that a unique equivalent model for
the structure cannot be defined. This fact strongly limits
the applicability of all the analyses of microstrip struc-
tures presented until now. Considerable attention has
been devoted to nonuniform lines, i.e., lines with continu-
ously or not continuously varying cross sections. The
existence of transmission zeros has been stressed both
theoretically and experimentally. In the particular case of
a double step discontinuity, the physical nature of such
zeros has been discussed for a long time [2], [10]-{13] and
they have been ascribed to the excitation of higher order
modes of propagation in the line section between the two
discontinuities. As will be shown below, such an interpre-
tation, in our opinion, is not correct, also because trans-
mission zeros are present in generic nonuniform lines
where the EM field cannot propagate as exp (—jfB3z).

In this paper an analysis of planar circuits based on the
theory of resonant cavities is presented. Three important
advantages are so obtained. The first consists in the
possibility of introducing frequency dependent effective
parameters for each resonant mode of the structure in
such a way as to obtain an accurate characterization of its
frequency behavior. The second is an electromagnetic
interpretation of the network’s filtering properties, particu-
larly of the transmission zeros, is easily obtained and the
above mentioned problems are clarified. Finally, the pre-
sent method leads to the evaluation of the impedance
matrix of the network in the form of a partial fraction
expansion with the advantages pointed out by Silvester
[6].

The analysis is limited to the important case of two-port
networks, since the extension to the general case is

0018-9480/78 /0700-0462$00.75 © 1978 IEEE
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Fig. 1. The planar two-port circuit.

straightforward. The general filtering properties are dis-
cussed and criteria for locating transmission zeros are
given. Several experimental results for circular and rectan-
gular structures in the frequency range 2-18 GHz show a
good agreement with the theoretical ones, obtained using
the effective parameters proposed in [9]. Structures with
nonseparable geometries could also be studied with the
same technique through a numerical method (e.g., a finite
element method).

II. FORMULATION OF FIELD PROBLEM

Fig. 1 shows a microstrip two-port circuit. The main
difficulty in the study of such a structure is due to the fact
that it is an open one, i.e., the EM field extends to infinity.
The central section may be considered as an open resona-
tor; the EM field is mainly concentrated in the cylindrical
volume V" bounded by the two conducting surfaces S, and
S, and, laterally, by the cylindrical surface S’. It may be
expressed as a function of the tangential magnetic field H,
on §’ in terms of the modes of the cavity V. Following a
procedure analogous to that of Kurokawa [14], one ob-
tains

E=3_e,E,+3,¢,FE, (1)
H=3hH,+3 hH, )

where E, and E, are the orthonormalized eigenvectors of
the following eigenvalue problem:

VXVXE—-VV-E—kE=0, insideV  (3a)
nXE=0 V-E=0, onS,.S, (3b)
nE=0 nxXVXE=0, onS’ (3¢c)

with the further conditions:
V-E,=0 VX E,#0, inside V' (4a)
VXE,=0, insideV. (4b)

Similarly, H, and H, are the orthonormalized eigenvec-
tors of

VXVXH-VV-H—KkH=0, insideV (5a)
nH=0 nXVXH=0, on S.,S, (5b)
nX H=0 V-H=0, on S’ (5¢)

with the conditions
V-H,=0 VX H,+#0, inside V' (6a)
VX H,=0, inside V. (6b)

It is possible to demonstrate that the eigenvalues of (3)—(4)
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coincide with those of (5)«(6) and that

VXH,=k,E,

VXE,=k,H, (7
The coefficient of the expansions (1) and (2) may be

calculated imposing that the EM field satisfies Maxwell’s
equations. One obtains

ea=7(-a2’_‘"%mfyn><ﬂ,-Ea ds
_ka
= oo G
ea=j—j)ﬁfs/n><H,-Ea ds
h, =0. (®)

Once the set of eigenvalue of (3) and (5) is known, the
evaluation of the EM field inside ¥ depends on the
knowledge of the tangential magnetic field H, on S’. In a
first approximation we may assume that H, is different
from zero omly at the connections o, between the cavity
and the lines where it has a TEM distribution!. Thus it is
constant. However, H_ is not exactly zero on the re-
mainder of S'; fringe effects can be taken into account by
ascribing to the structure effective dimensions and an
effective permittivity, according to the widely adopted
magnetic wall model of microstrip structures. We shall
come back to this point later.

Because of the above simplifying hypotheses, the EM
field in the cavity is determined as a function of the
magnetic field H, = Ht and H,= H,t at the outputs,
which is independent of z. The structure may, therefore,
be considered as a two-dimensional one. It is easily seen
that, imposing the condition 9/9,=0 on (1)(8), the E,’s
have only the z component, while the E,’s do not exist,
with the exception of only the mode E, having zero
divergence. After simple manipulations, the EM field in
the cavity may be expressed as follows:

E=;53 e E,+ e,V 12 9)
H=—1% ¢ :xVE, (10)
Jop
where

e,= 2% _(Vo, P, H,+Vo, P,H,) (lla)

k2 — e ! i
Pa,=o,“/2fEadS, i=1,2 (11b)

V—1/2

= +0,H Iic
€ e (oyH,+0,H,) (11¢)

where 7 is the unit vector of the z axis, V is the volume of

'Higher order modes on the uniform lines may be neglected with good
approximation if the uniform sections are long enough and their widths
are much smaller than the cavity’s dimension [1]. In any case, when
necessary, higher modes can be taken into account with a rather more
complicate algebra.



464

the cavity, and ¢, and o, are the surfaces of the outputs of
the cavity, ie., the portions of S’ where H_ is different
from zero. Ey=Z2V ~'/? is the mode having zero curl and
zero divergence, belonging to the E,’s. Since (11c) can be
obtained from (1la) and (11b) by putting k2=0 and
E,=E,=V ™2 later on this mode will be included
among the E’s.

The eigenfunctions E, have to satisfy the two-dimen-
sional eigenvalue equation deriving from (3)

VE+ K =0 (12)

together with the boundary condition
0E _ /
= 0 (129

which derives from the second of (3¢); the other boundary
conditions are automatically satisfied.

One can note that the a modes are, in this case, TM
with respect to the z direction; the o mode, on the
contrary, corresponds to the electrostatic field problem.

Once (12) is solved for a particular geometry, the EM
field inside the cavity is fully determined through (9)-(11)
as a function of the magnetic fields supported by the
uniform lines. Nevertheless, a terminal description of the
structure as a two-port network is generally preferable.
This can be obtained by evaluating the impedance matrix,
relative, of course, to the dominant TEM modes of the
lines. The amplitude of the electric field E; on the ith line
is obtained by projecting the field (9), calculated at o, on
the abstract vector space of the modes of the line and
retaining the TEM component [15], i.e.,

E,=lfz*~EdS, i=1,2.

G,

Through (9) and (11) E, can be expressed as a function of
H b H 2

2
al

P
E =H jopZ,—————
1 JWALIY, akg__wzluﬁ
PaIPaZ

ar2_ 2
k:—wpe

+ H,jopZ

'["2/"1]1/2

PaZPal

E,=H jop2,——~2—.T6,/0,]'/?
2 1JO% kf—wz,ue [ W/ 2]

2

a2
+H,jopZ,———.
2J W 12— e

(13)
2_

If one defines equivalent voltages and currents in such a
way as to normalize to unity the characteristic impedances
of the lines, i.e.,

Vi=E[oVe/u |
Ii=Hi[0i V/e ]1/2, (14)

from (13) and (14) the following expression of the [Z]
matrix is easily obtained

[Z2]=2.]2,]

i=1,2

(15)
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with
P}

Pa2Pa1

Jwce
]:Za:l = 2

W,

Pa1Pa2
Ph

(15)

—w?
p and € are the substrate’s permeability and permittivity,
respectively, and

w,=ck

a a

are the resonant frequencies of the cavity. If there are »,
linearly independent eigenfunctions corresponding to the
same eigenvalue k’

EMED ... g0
which, without loss of generality, may be supposed to be
ortogonal, (15”) should be replaced by

Py

PPPY

Ya

PYPY
Py

Jjoc
Z,|=—— s
[ a] w—w? 2

c=1/V pe

while, in (15), the summation over a should include only
distinct w,’s. [Z] is a purely imaginary matrix since the
structure has been supposed without losses. If the network
is symmetrical

(157)

Pa2=€aPa1 (16)
where ¢, =1 for even modes and ¢,= —1 for odd modes.
The impedance parameters may be written

Ly =Lp=Zy+Zy
Zyp=25=2Zy—Zy (17)
where
2
Z., =jwcZ d
w2, —w?
P2
Z 4 =jwc2-2—°—2 (17
Wog—w

ev being the index of the even modes, od of the odd
modes.

The calculation of the [Z] matrix requires the evalua-
tion of the eigenfunctions and eigenvalues E,, k? and then
of the P,;. This can be done analytically if the structure
has a separable geometry; if the geometry is not separ-
able, a numerical method could be adopted.

I1I.

The formulation given in the previous section has led to
a complete characterization of the microwave network in
terms of its impedance matrix. In order to discuss the
filtering properties of the structure, a description in terms
of the scattering parameters is preferable since the imped-
ance matrix elements are not quantities easily measurable
at microwave frequencies; moreover the scattering matrix
provides a more appropriate physical description of the
structure behavior. In terms of the impedance parameters
the scattering parameters are given by

GENERAL FILTERING PROPERTIES
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su=[(Zy=1)(Zp+1)-2Z%]/D
2= [(le+ )(Zyp- 1)"2122]/1)
S12=53=2Z1,/D (18)
where

D=(Z;+1)(Zp+1)—Z, (18')

Let us start examining the structure’s behavior at the
resonant frequency w, of one of the modes. It is con-
venient to write the Z parameters as follows:

Zy =joc——"—

(19)

where ZA,.j remains finite for w—w,. Let us distinguish two
cases.

1) 0,10, =0%. This equality is always verified for
nondegenerate modes. We further distinguish two sub-
cases.

a) 0110n= le_o Since the case Q= Qn=0Q,=0
may be excluded ,? the structure has to be nonsymmetrical
(0117 Q,,)- From (18) and (19) one immediately obtains

s12(,) =0.

According to whether Q,, or Q,, is different from zero,
s;;=1, or 5,,=1, respectively. The resonant frequency «
therefore, corresponds to a transmission zero. This can be
easily explained from an electromagnetic point of view.
Suppose Q,,=0: this means that the p mode is uncoupled
to the second port. When an EM field is incident to the
first port at the frequency w=w,, the EM field inside the
cavity would become infinite (see (11a)) unless the total
(incident plus reflected) magnetic field at the first port is
zero; this implies s, =1, 5,,=0.

We may, therefore, conclude that in nonsymmetrical
structures a transmission zero takes place at the resonant
frequency of one mode which is uncoupled to one of the
ports. Later on, transmission zeros taking place at reso-
nant frequencies w, will be referred to as modal zeros.

b) 01,0,=037#0. In this case, when w—w, the
scattering parameters do not generally assume significant
values. Nevertheless, it is worth considering the case of a
symmetrical structure (Q;= Q0,,= * Q},). For w—w, one
obtains from (18) and (19)

Zy—¢Zy, e = &
1+2,,-¢Zy, e 1+le—€p‘212.

According to whether p is an even (g,=1) or an odd
(¢,=—1) mode the quantity 2 - cpZ , is equal to 2Z 4

SM=Sn=

%In that case, in fact, the p mode cannot be excited in the structure
and therefore can be excluded from any consideration.
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or to 2Z,, (see (17')), respectively. These quantities are
often negligible with respect to unity, so that s,,=s,,=0,
s;;=¢,. In other words, in a symmetrical nondegenerate
structure modal transmission zeros do not take place; on
the contrary, the w,’s give generally place to approximate
reflection zeros. It is worth specifying that the existence of
a reflection zero at or near w, depends on the widths of
the ports; in some cases, in fact, the reflection zero takes
place only if the ports are small enough. Typical examples
will be shown below. For the sake of brevity we omit to
demonstrate the above statements which, on the other
hand, can be easily proved.

2) 01,057 Q. This case can be verified only for a
degenerate mode. It is easily seen that at the frequency
w=w, §;=53=1, 5,=0. This is another case of modal
transmission zero, which is due to a degenerate mode of
the cavity, or rather to the superposition of degenerate
modes.

Having examined the structure’s behavior at the reso-
nant frequencies of the cavity, let us now consider the
cases when a transmission zero takes place.

From (18) it follows that for s,, to be zero there are
only two cases: a) [D|=oo. This condition holds only if
w=uw,, and therefore is that of a modal transmission zero.

b) Z,,=0. Since
PalPaZ

2"“0.)2

Z,=jwcE, (20)

@y

it can be easily inferred that between two consecutive
resonant frequencies w,, w, such that ’

Pp2)=sgn (PqIPq2) (?1)

w,,w,) such that

sgn (P,

there is necessarily a frequency w, €(
Z15(w,)=0, sp(w,)=0.

In case of mode degeneracy, (21) should be replaced by

”p Yq
sgn( > 1},”31;”2)) =sgn ( > 1;?1,55)). 21)

v=1 p=1

In order to find a physical interpretation of this type of
transmission zero, suppose the cavity is excited by a field
incident to the first port at a frequency located between
and w; if (21) is satisfied, the p and ¢ modes will give
place to opposite contributions to the field at the output.
In other words, they interact destructively at the second
port. At the frequency w=uw,, whose location between w,
and w, depends also on the contribution of all the other
modes, there is a totally destructive interaction in such a
way that no power can be transferred towards the output.
This type of transmission zero will be called interaction
Zero.

For symmetrical nondegenerate structures, because of
(16), (21) becomes

It P 1 P2=0 (i.e., there is a modal transmission zero at w,), in (21) the
successwe mode must be considered, say, the r mode, such that P, P,
0.
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Fig. 2. The circular microstrip.

&=
ie., if two consecutive resonant modes are both even or
odd, an interaction transmission zero is located between
their resonant frequencies.

IV. THE CIRCULAR MICROSTRIP

The first case of the two-port network we have consid-
ered is the circularly shaped microstrip line shown in Fig.
2. The orthonormalized eigenfunctions of (12) are, in this
case,

cos mo m=0,1.2---

s Ly 22
Cmn']m(kmnr){sinm(i)}’ n=1’2’3... ( )
where

1/2
1 8,
™ \/I7 Jm (g;nn) 1 — (ﬂ_)z
§un
V—Wazh
o/ A= W/ €
and
s ={ 1, form=0
m 2, for m==0

is the Neumann factor; £, is the nth root of the equation

d _
2;],,, (x)=0

and & is the substrate’s thickness. Besides the set of
eigenfunctions (22), the eigenfunction corresponding to
k?=0 must be considered

Ep=1/VV .
Such an eigenfunction can be obtained from (22) by

putting conventionally

m
’ n=0
mn | o

=0.

Equation (22) shows the existence of a pair of degenerate
modes for any m==0. We shall restrict our attention to the
important case of symmetrical structures (w,=w,=w;
0,=0,=40). Following the procedure described in the pre-
vious section, one obtains for the [Z] matrix elements®

4As a consequence of the hypothesis that the widths of the ports are
much smaller than the cavity’s radius, the arcs #; and 8, may be
confused with the corresponding chord.
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Z,=2Z, —ij——— >y - —
m=0n=0 ""mn w
Zy=2Z,= jwc—- 2 2 ————cosmy (23)
m=0n=0 "-’mn w?
where
A2 =( sin mf )2 6m (23/)
mb ) 1—(m/g,)

Let us consider the structure’s behavior at the resonant
frequencies of the cavity. The condition of case 2) of the
previous section becomes

cos® my~1. (24)

Therefore, for generic values of  and for m=0, each
resonant frequency corresponds to a modal transmission
zero. On the contrary, if my=s7 (s=0,1,2,-- ) case 2b)
is verified, i.e., for § small enough, a reflection zero takes
place near such resonant frequencies. This happens for all
the modes of a doubly symmetrical structure (=) and,
in general, for the (0,7) modes.

Besides modal transmission zeros, interaction zeros take

place between consecutive resonant frequencies w,, , and
@y, SUCH that®
sgn (cos mP) =sgn (cos m,y). (25)

In the doubly symmetrical case (=) (31) becomes®

(=D"=(-1)™ (25)
i.e., an interaction zero is located between the resonant
frequencies of two consecutive modes having both an
even, or an odd, azimutal dependence.

From (25) it follows that transmission zeros can be
located between any pair of resonant frequencies by vary-
ing the angle ¢ between the two uniform lines.

Fig. 3 shows the theoretical behavior of the scattering
parameter |s;,| of a doubly symmetrical circular micro-
strip versus the frequency in the range 218 GHz. (Expres-
sions (23) have been evaluated taking into account the
first 62 modes). This curve has been obtained completely
neglecting fringe effects, i.e., ascribing to the EM model
the physical dimension of the structure and assuming for €
the permittivity of the substrate (alumina, e=10 ¢,). The
locations of the resonant frequencies w,,, are also indi-
cated in the figure. The structure presents two transmis-
sion zeros, which are due to the interaction between the
pair of modes (2,1)-(0,1) and (1,2)~(5,1), accordingly to
(25). (The last resonant frequency is not indicated in the
figure, because it is out of scale). Reflection zeros are
located near each resonant frequency, with the exception
of the modes (4,1) and (1,2) which are very close
together; for the assumed port widths, corresponding to

5If cos m2\[/ =0, (thus a modal transmission zero takes place at ,,,, )
the successive mode must be considered in (25). See footnote 3.
61t may be noted that in this case the structure behaves as a nondegen-
erate one, since for each k2, only one of the two degenerate modes can
be excited, both from the 1nput or from the output.
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Fig. 3. Transmission coefficient |s,,| versus the frequency for a circular
microstrip (magnetic wall model without effective parameters).
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Fig. 4. Experimental behavior of the transmission coefficient |s),]
versus the frequency for the same structure as in Fig. 3. Substrate
material alumina.

50-Q lines, reflection zeros do not take place at these
frequencies.

Fig. 4 shows the experimental behavior of [s,| for the
same structure as in Fig. 3. The comparison between these
diagrams shows a good qualitative agreement between
theory and experiment up to ~12 GHz. The disagreement
consists on the one hand in a slight shifting of the reflec-
tion and transmission zero frequencies and, on the other
hand, in lower values of the theoretical |s;,|. The latter
fact can be easily explained, since the EM coupling be-
tween the uniform lines and the cavity is, in reality,
stronger than the theory predicts, because the fringing
field of the lines has been neglected. With regard to the
frequency shifting of the two diagrams, it must be ob-
served that the experimental resonant frequencies are dif-
ferent from the theoretical ongs, as previously pointed out,
Over ~12 GHz, the theory yields to inacceptable errors;
the two diagrams do not agree even from a qualitative
point of view. As has been previously noted [7], the
experimental resonant frequencies may differ from the
theoretical ones in such a way that the sequence of modes
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Fig. 5. Transmission coefficient |s,| versus the frequency for the same
structure as in Fig. 3 (magnetic wall model according to the present
theory).

is different in the two cases. Since interaction zeros de-
pend on such a sequence, their location might be strongly
altered.

The above considerations indicate that account must be
taken of fringe effects both of the lines and of the cavity.
This can be done by ascribing to the lines effective widths
and effective permittivities accordingly, for instance, to
Wheeler [16] or to Schneider [17], [18]. With regard to the
circular resonator, fringe effects depend on the resonant
mode and can be taken into account through an equiv-
alent model for each mode, accordingly to Wolff and
Knoppik [9]. Expressions (23) should be therefore mod-
ified by introducing an effective port width w, an effec-
tive frequency dependent permittivity of the lines e.q( /),
an effective cavity radius r,; and, finally, an effective
dynamic permittivity of the cavity €y, ,.,(f), which also
depends on the resonant mode.

The results obtained in this way are shown in Fig. 5 and
agree very well with the experiments in Fig. 4. In particu-
lar, one can note that the resonant frequencies of the
modes (4,1) and (1.2) are now interchanged: the second
transmission zero is therefore due to the interaction be-
tween the (3,1) and (1,2) modes. This phenomenon is
analogous to the modal inversion in circular waveguides
[19] and could be experimentally verified by means of a
field mapping technique [20]. The residual differences
between the theoretical and experimental magnitudes of
|s;,] are essentially due to losses, particularly to radiation
losses, which have been completely neglected.

Fig. 6(a) and (b) shows the theoretical behavior of |s,,|
versus the frequency for a circular microstrip with ¢=
/2. This structure presents a modal transmission zero at
each resonant frequency of one mode having an odd
azimutal dependence (see (24)), i.e.. in the frequency
range considered, of the modes (1,1), (3,1), and (1,2). For
Y=m/2, (25) shows that interaction zeros take place be-
tween the resonant frequencies of modes (4m,,n)—
(4m,, ny) or (dmy+2,n)—(4m,+2.n,); in the present case

[T
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Fig. 6. Transmission coefficient |s,,| versus the frequency, for a circu-
lar microstrip. (a) Theory. (b) Experiment,.

there is only one interaction zero between the modes (0,1)
and (4, 1).

It is easy to verify that, for ¢ <= /2, an interaction zero
takes place between the (0,0) and (1,1) modes. For y—
7 /2 the interaction zero tends to the modal zero due to
the (1,1) mode. Fig. 7 shows the theoretical frequency
location of such transmission zero as a function of the
angle ¢ for a given cavity’s radius. As can be seen, a good
agreement with the experiments is obtained. This figure
shows the possibility of locating a transmission zero at a
given frequency by suitably positioning the output port of
the network.

V. THE RECTANGULAR MICROSTRIP

Another type of two-port planar network consists of a
rectangular central section connected with two uniform
lines (Fig. 8). This structure may be considered also as a
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Fig. 7. Frequency location of the first transmission zero presented by a
circular microstrip as a function of the angle between the two ports.
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Fig. 8. The rectangular microstrip.

double step discontinuity; on the other hand, for 1«5 it
becomes a stub structure.
Simple calculations yield to the following expressions of

the Z parameters of the structure’
]wcw1 © = 6,0,/
Z, >3
m=0 n=0 wmn—w
wew, X X 2
Z .] 2 2
=0 n=0 wmn w
JwcVww, & & 8pu8ufut fr2
sz=le=——T1— 2 Z (=n” ’; (26)
m=0n=0 wmn_w
where
Gy =cm\m/1)* +(n/ BY
. nmw,
sin
nap;
fum] O T s forn 0,
2b
1, forn=0

"The series over m could be evaluated analytically and equivalent
expressions to those in [1] would be obtained; nevertheless, they are not
suitable for our purpose, since it is necessary to introduce effective
parameters for each resonant mode, i.e., for each term of the series (26),
in the same way as has been done in the case of the circular microstrip.
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Fig. 9. Transmission coefficient |s,,] versus the frequency for a sym-
metrical rectangular microstrip. (a) Theory. (b) Experiment.

For symmetrical structures (w;=w,, f3=/3), as previ-
ously stated, transmission zeros are only of the interaction
type; in particular, if p,=p, condition (21) becomes

(=) =(=1"
i.e., transmission zeros are located between the resonant
frequencies of consecutive modes having both an even
or an odd dependence with respect to the x direction.

Nonsymmetrical structures can also present modal
transmission zeros, which are located at the resonant
frequencies w,,, such that f,;=0 and f,#0, or vice versa.

Fig. 9(a) and (b) shows the theoretical and experimental
behaviors of |s;,| of a symmetrical rectangular microstrip
versus the frequency in the range 2-18 GHz. Theoretical
results have been obtained by adopting for the resonator
the model suggested by Wolff and Knoppik [9]; the first
400 modes have been retained in (26). The structure
presents four transmission zeros due to the interaction of
the following pairs of modes: (0,0)~0,2), (1,0)«(1,2),
(0,4-(2.0), (2,2)-(0,6). It is important to note that the
first transmission zero is located close to the resonant
frequency of the (0,2) mode. Since this frequency is noth-
ing but the cutoff frequency of the TESY) mode of propa-
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gation in the wider microstrip section, that transmission
zero has been ascribed to the excitation of the TESy mode
[10[H12]. Such an interpretation is, in our opinion, in-
acceptable. As has been previously pointed out, given the
symmetry of the structure, a resonant mode cannot give
place to a transmission zero, but on the contrary it can
give place to a reflection zero: the (0,2) mode can produce
a transmission zero only through the interaction with
another resonant mode, which is even with respect to the
x direction (i.e., a (2m,n) mode). For a different 1/b
ratio, in fact, this mode does not give place to any
transmission zero, as will be shown later. One may more-
over observe that the (0,2) and (1,0) modes, which are
rather close together, do not give place to any reflection
zero. This is a typical case when two resonant modes
interact together in such a way that no reflection zero
takes place. However, one could verify that if the port
widths would be very small (about Sum) two reflection
zeros would take place at these resonant frequencies.

The experimental results in Fig. 9(b) agree fairly well
with the theoretical ones until ~12.5 GHz; at higher
frequencies there is a little shifting between the theoretical
and experimental resonant frequencies. Moreover, the
effect of the losses becomes appreciable over ~15 GHz.
A more accurate and complete model Jf the structure
would therefore require a better evaluation of the reso-
nant frequencies and, at the same time, the introduction
of the losses.

In order to confirm what is stated above with regard to
the (0,2) mode, another structure has been made with
proper dimensions in such a way that this mode is located
between two odd modes. Fig. 10(a) and (b) shows the
corresponding theoretical and experimental results. As the
theory predicts, in this case, the (0,2) mode does not give
place to any transmission zero; the three transmission
zeros are due to the interaction between the modes (4,0)
and (2,2), (3,2) and (5,0), and (4,2) and (6,0). As can be
noted the theory agrees very well with the experiment in
the whole frequency range 218 GHz.

Fig. 11(a) and (b) shows the theoretical and experimen-
tal results for a nonsymmetrical rectangular microstrip.
In this structure odd modes with respect to the y axis can
be excited at the second port, but not at the first one. As a
consequence, all the (m,2n+ 1) modes give place to modal
transmission zeros. It is worth observing that the first zero
is located at the resonmant frequency of the (0,1) mode,
corresponding to the cutoff frequency of the TE§) mode
of propagation in the central section. This accounts for
previous observations [10]-[13] with regard to nonsymmet-
rical step discontinuities; in this case, the statement that
transmission zeros are due to higher order modes is cor-
rect, since it is a modal and not an interaction zero. The
structure in Fig. 11 presents also three transmission zeros
due to the interaction between the modes (2,0)—-0,2),
(1,2)~(3,0), and (2,2)-(4,0). In spite of the complexity of
the frequency behavior of the structure, the theoretical
results may be considered highly satisfactory.
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Fig. 10. Transmission coefficient |s,,| versus the frequency for a sym-
metrical rectangular microstrip. (2) Theory. (b) Experiment.

V1. ConcLusioNs

A method of analysis of planar microwave structures is
presented, which is based on a field expansion in terms of
resonant modes. The case of two-port networks is consid-
ered, but the extension to N-port circuits is straightfor-
ward. The general filtering properties are discussed and, in
particular, the physical nature of transmission zeros,
-which has been the subject of several discussions, is clari-
fied. The existence of two types of transmission zeros,
modal and interaction zeros, is pointed out. The first ones
are due to the structure’s resonances, while the second
ones are due to the interaction between resonant modes.
The latter are the only ones present in symmetrical nonde-
generate structures.

Fringe effects are accounted for in a simple way,
namely by introducing in the magnetic wall model effec-
tive parameters for each resonant mode, while other
methods presented until now are limited by the impossi-
bility of taking into account fringe effects in an adequate
way. It is also shown that these effects should not be
neglected, since they can produce a modal inversion and,
consequently, a strong alteration of the structure’s
frequency behavior.
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symmetrical rectangular microstrip. (a) Theory. (b) Expertment.
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Several experimental results performed on circular and
rectangular structures are compared with the theoretical
ones deduced by assuming the effective parameters sug-
gested in [9]. A good agreement is obtained, particularly
for the circular microstrips; for rectangular microstrips a

‘better characterization of the alterations due to fringing

fields would be desirable. To that purpose it is necessary
to adopt a full-wave analysis for calculating the resonant
frequencies and the coupling between the lines and the
resonant modes. This can be done on the basis of some
methods presented in the literature [21]-23].

Finally, it is worth pointing out that the method could
be also adopted for planar circuits with any geometry, for
instance through a finite element analysis.
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Analysis of Planar Disk Networks

RENE R. BONETTI anp PLINIO TISSI

Abstract—The impedance matrix of a disk n-port is determined with
fringing fields at the disk edge included in the analysis. The theory is valid
for both stripline and microstrip geometries and is alse applicable to
magnetic substrates. A simple quasi-static appreximation to the disk
capacitance is obtained. Applicability to numerical design is exemplified
with the search for transmission zeros in a reciprecal 2 port. Experimental
results are presented for the 1-port and 2-port disks.

I. INTRODUCTION

LANAR NETWORK theory is becoming a powerful
tool for the design of microwave integrated circuits
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[1]{4]. When compared to other physical structures,
planar networks offer the designer considerable freedom,
due not only to their size and shape but also to the large
variety of devices realizable with simple geometries.

A very simple shape, the disk, has already proven very
useful for the realization of junction circulators and pre-
sents interesting possibilities for other devices.

Well known theories for disk networks on magnetic
substrate [5]-[7] make use of the edge magnetic wall
(EMW) as a boundary condition at the disk edge and,
therefore, exterior fields are not included in the analysis.
With respect to this problem we quote Bosma [8]: “It is
the unsolved problem of the fringing field that makes
numerical design of circulators not yet very spectacular.”
Furthermore, in a recent paper by de Santis [9] transitions
from volume modes to edge guided modes were shown to
be strongly influenced by these fields.
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