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Abstract—A method of analysis of planar microwave structures, based

on a field expansion in term of resonant modes, is presented. A first

advantage of the method consists in the possibtity of taking into account

fringe effects by introducing, for each resonant mode, asseqoivafent model

of the structure. Moreover, the electromagnetic interpretation of the

filtering properties of two-port networks, particularly of the transmission

zeros, whose nature has been the subject of several discussions, is easily

obtained. The existence of two types of transmission zeros, modaf and

interaction zeros is pointed out. The fiit ones are due to the structure’s

resonances, while the seeond ones are due to the interaction between

resonant modes. Severaf experiments performed on circnfar and rectangn-

Iar microstrips in the frequency range 2-18 GHz have shown a good

agreement with the theory.

I. INTRODUCTION

A FTER THE STUDY of the transmission properties

of microstrip lines, the great diffusion of microwave

integrated circuits has led to the analysis of general planar

circuits. To this purpose, analytical methods, applied to

structures of simple geometry [1 ]–[3], and numerical

methods, apt to the study of more complex geometries

[4]-[6], have been developed. In both cases a magnetic

wall model has been adopted for the structure because of

the formidable boundary value problems. In such a way,

however, one not only neglects the dispersion properties

of the circuit, which are due to fringe effects, but often

obtains erroneous results [7].

To overcome this difficulty, in the case of step discon-
tinuities, i.e., of structures with separable geometry in

rectangular coordinates, Menzel and Wolff [8] have re-

cently proposed a method of analysis based on the correc-

tion of the magnetic wall model by means of frequency

dependent effective parameters. However, it must be ob-

served that effective parameters depend not only on the
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frequency, but also on the field distribution inside the

structure. It is sufficient to instance the disk resonators for

which Wolff and Knoppik [9] have shown a frequency

dependent equivalent model to exist for each resonant

mode, in such a way that a unique equivalent model for

the structure cannot be defined. This fact strongly limits

the applicability of all the analyses of rnicrostrip struc-

tures presented until now. Considerable attention has

been devoted to nonuniform lines, i.e., lines with continu-

ously or not continuously varying cross sections. The

existence of transmission zeros has been stressed both

theoretically and experimentally. In the particular case of

a double step discontinuity, the physical nature of such

zeros has been discussed for a long time [2], [ 10]–[ 13] and

they have been ascribed to the excitation of hi@er order

modes of propagation in the line section between the two

discontinuities. As will be shown below, such an interpre-

tation, in our opinion, is not correct, also because trans-

mission zeros are present in generic nonuniform lines

where the EM field cannot propagate as exp ( –j~z).

In this paper an analysis of planar circuits based on the

theory of resonant cavities is presented. Three important

advantages are so obtained. The first consists in the

possibility of introducing frequency dependent effective

parameters for each resonant mode of the structure in

such a way as to obtain an accurate characterization of its
frequency behavior. The second is an electromagnetic

interpretation of the network’s filtering properties, particu-

larly of the transmission zeros, is easily obtained and the

above mentioned problems are clarified. Finally, the pre-

sent method leads to the evaluation of the impedance

matrix of the network in the form of a partial fraction

expansion with the advantages pointed out by Silvester

[6].

The analysis is limited to the important case of two-port

networks, since the extension to the general case is

0018 -9480/78 /0700-0462$00.75 01978 IEEE
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Fig. 1, The planar two-port circuit.

straightforward. The general filtering properties are dis-

cussed and criteria for locating transmission zeros are

given, Several experimental results for circular and rectan-

gular structures in the frequency range 2–18 GHz show a
good agreement with the theoretical ones, obtained using

the effective parameters proposed in [9]. Structures with

nonseparable geometries could also be studied with the

same technique through a numerical method (e.g., a finite

element method).

II. FORMULATION OF FIELD PROBLEM

Fig. 1 shows a microstrip two-port circuit. The main

difficulty in the study of such a structure is due to the fact

that it is an open one, i.e., the EM field extends to infinity.

The central section may be considered as an open resona-

tor; the EM field is mainly concentrated in the cylindrical

volume v bounded by the two conducting surfaces S1 and

S’z and, laterally, by the cylindrical surface S’. It may be

expressed as a function of the tangential magnetic field H,
on S‘ in terms of the modes of the cavity P’. Following a

procedure analogous to that of Kurokawa [14], one ob-

tains

E= EaeaEa+ZaeaEm (1)

H= ZahaHa +XahaHa (2)

where Ea and Ea are the orthonormalized eigenvectors of

the following eigenvalue problem:

VxVx E–VV.E–k2E=0, inside V (3a)

nxE=O V.E=O, on S,, S, (3b)

n.E=() nXVXE=O, on S’ (3C)

with the further conditions:

v.Ea=o VXEa#O, inside V (4a)

vxEa=o, inside V. (4b)

Similarly, Ha and Ha are the orthonormalized eigenvec-

tors of

VxVx H–VV.H–k2H=0, inside V (5a)

n.~= () nXVXH=O, on S1, S2 (5b)

nXH=O V.H=O, on S’ (5C)

with the conditions

V.HO=O VxHa#O, inside V (6a)

VxHa=O, inside V. (6b)

It is possible to demonstrate that the eigenvalues of (3)-(4)

coincide with those of (5)–(6) and that

V X Ha = kaEa

VxEo=kU&. (’7)

The coefficient of the expansions (1) and (2) may be

calculated imposing that the EM field satisfies Maxwell’s

equations. One obtains

Once the set of eigenvalue of (3) and (5) is known, the

evaluation of the EM field inside V depends on the

knowledge of the tangential magnetic field @ on S’, In a

first approximation we may assume that li, is different

from zero only at the connections o, between the cavity

and the lines where it has a TEM distribution. Thus it is

constant. However, H, is not exactly zero on the re-

mainder of S‘; fringe effects can be taken into account by

ascribing to the structure effective dimensions and an

effective perrnittivity, according to the widely adopted

magnetic wall model of microstrip structures. We shall

come back to this point later.

Because of the above simplifying hypotheses, the EM

field in the cavity is determined as a function of the

magnetic field H,, = Ill t and H,2 = H2t at the outputs,

which is independent of z. The structure may, therefore,

be considered as a two-dimensional one. It is easily seen

that, imposing the condition ~/tlz = O on (1)–(8), the Es’s
have only the z component, while the Es’s do not exist,

with the exception of only the mode EO having zero

divergence. After simple manipulations, the EM field in

the cavity may be expressed as follows:

E=2Zae.EU+2eOV”1/2 (9)

H= ~Eaea.i XVIEa
jap

where

(llb)

(Ilc)

where 2 is the unit vector of the z axis, V is the volume of

1Higher order modes on the uniform lines may be neglected with good
approximation if the uniform sections are long enough and their widths
are much smaller than the cavity’s dimension [1]. In any case, when
necessary, higher modes can be taken into account with a rather more
complicate algebra.
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the cavity, and u, and Oz are the surfaces of the outputs of with

the cavity, i.e., the portions of S’ where H, is different

from zero. EO= i?P’ – 1/2 is the mode having zero curl and

zero divergence, belonging to the Ea’s. Since (1 lc) can be

obtained from (11 a) and (1 lb) by putting k;= O and

E.= EO= V -’12, later on this mode Will be included

among the E.’s.

The eigenfunctions E= have to satisfy the two-dimen-

sional eigenvalue equation deriving from (3)

V:E+k2E=0 (12)

together with the boundary condition

(12’)

which derives from the second of (3c); the other boundary

conditions are automatically satisfied.

One can note that the a modes are, in this case, TM

with respect to the z direction; the o mode, on the

contrary, corresponds to the electrostatic field problem,

Once (12) is solved for a particular geometry, the EM

field inside the cavity is fully determined through(9~11)

as a function of the magnetic fields supported by the

uniform lines, Nevertheless, a terminal description of the

structure as a two-port network is generally preferable.

This can be obtained by evaluating the impedance matrix,

relative, of course, to the dominant TEM modes of the

lines. The amplitude of the electric field Ei on the ith line

is obtained by projecting the field (9), calculated at Ui, on

the abstract vector space of the modes of the line and

retaining the TEM component [15], i.e.,

/
E,= ~ .2*E dS, i=l,2.

0, ~,

Through (9) and (11) E, can be expressed as a function of

H,, H2

Paz,
El= Hljq.L2~

k: – W2/J.@

(13)

If one defines equivalent voltages and currents in such a

way as to normalize to unity the characteristic impedances

of the lines, i.e.,

q.= Ei[fJ1~ ]“2

Ii= Hi[uiti~; ]“2, i=l,2 (14)

from (13) and (14) the following expression of the [Z]

matrix is easily obtained

[Z]=xa[za] (15)

p and e are

respectively,

“[ Pa,Pa2
[z.]= * Pp: p2

i

(15’)
a a2 al a2

the substrate’s permeability and permittivity,

and

ua = cka

are the resonant frequencies of the cavity. If there are V.

linearly independent eigenfunctions corresponding to the

same eigenvalue k:

which, without loss of generality, may be supposed to be

ortogonal, (15’) should be replaced by

c=l/@ (15”)

while, in (15), the summation over a should include only

distinct Ua’s. [Z] is a purely imaginary matrix since the

structure has been supposed without losses. If the network

is symmetrical

Pa2= eaPa, (16)

where c== 1 for even modes and co= – 1 for odd modes.

The impedance parameters may be written

Zll = 222= Zev+ Zod

Z12= Z21 = Zev– Zod (17)

where

P:.
Z.v = jtic~

(&,-u’

P:d
ZO~ = jwX , , (17’)

W:d — u“

ev being the index of the even modes, od of the odd

modes,

The calculation of the [Z] matrix requires the evalua-

tion of the eigenfunctions and eigenvalues E., k: and then

of the Pa,. This can be done analytically if the structure

has a separable geometry; if the geometry is not separ-

able, a numerical method could be adopted.

III. GENERAL FILTERING PROPERTIES

The formulation given in the previous section has led to

a complete characterization of the microwave network in

terms of its impedance matrix. In order to discuss the

filtering properties of the structure, a description in terms

of the scattering parameters is preferable since the imped-

ance matrix elements are not quantities easily measurable

at microwave frequencies; moreover the scattering matrix

provides a more appropriate physical description of the

structure behavior. In terms of the impedance parameters

the scattering parameters are given by
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s,, =[(z,l- l)(z22+l)-z:2]/D

S22= [(zl*+ 1)(Z22– 1)–z:2]/D

s12=sz1=2Z1z/D (18)

where

D=(Zll+l)(Z2z+ l)– Z& (18’)

Let us start examining the structure’s behavior at the

resonant frequency tiP of one of the modes. It is con-

venient to write the Z parameters as follows:

(19)

vvhere .2?Vremains finite for o--x+. Let us distinguish two

cases.

1) Q1~Q22==Q~2. This equality is always verified for

nondegenerate modes. We further distinguish two sub-

cases.

a) Q11Q22= Q~2=0. Since the case Qll = Q22= Q12=0

may be excluded ,2 the structure has to be nonsymmetrical

(Q, I # Q22). From (18) and (19) one immediately obtains

s12(L@=o.

According to whether Q1~ or Q22 is different from zero,

s~,= 1, or S22= 1, respectively. The resonant frequency 6+,

therefore, corresponds to a transmission zero. This can be

easily explained from an electromagnetic point of view.

Suppose Q22==O: this means that the p mode is uncoupled

to the second port. When an EM field is incident to the

first port at the frequency o= UP, the EM field inside the

cavity would become infinite (see (11 a)) unless the total

(incident plus reflected) magnetic field at the first port is

zero; this implies SIl = 1, S12=0.

We may, therefore, conclude that in nonsymmetrical

structures a transmission zero takes place at the resonant

frequency of one mode which is uncoupled to one of the

ports. Later on, transmission zeros taking place at reso-

nant frequencies tia will be referred to as modal zeros.

b) Q, ~Q2Z= Q~2#O. In this case, when a~oP the

scattering parameters do not generally assume significant

values. Nevertheless, it is worth considering the case of a

Symmetrical structure (Ql ~= Q22= + Q12). For ti~tiP one

obtains from (18) and (19)

According to whether p is an even ~(~ = 1) or an odd

(SO= – 1) mode the quantity ~1, – ~Z12 is equal to 2ZO~

21n that case, in fact, the p mode cannot be excited in the structure
and therefore can be excluded from any consideration.
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or to 2Zev (see (17’)), respectively. These quantities are

often negligible with respect to unity, so that SI~= S22= O,
S12= Cp. In other words, in a symmetrical nondegenerate

structure modal transmission zeros do not take place; on

the contrary, the Ud’s give generally place to approximate

reflection zeros. It is worth specifying that the existence of

a reflection zero at or near ~P depends on the widths of

the ports; in some cases, in fact, the reflection zero takes
place only if the ports are small enough. Typical examples

will be shown below. For the sake of brevity we omit to

demonstrate the above statements which, on the other

hand, can be easily proved.

2) QI, Q22# Q~2. This case can be verified only for a

degenerate mode. It is easily seen that at the frequency

o = tiP S1,= SZ2= 1, S12= O. This is another case of modal

transmission zero, which is due to a degenerate mode of

the cavity, or rather to the superposition of degenerate

modes.

Having examined the structure’s behavior at the reso-

nant frequencies of the cavity, let us now consider the

cases when a transmission zero takes place.

From (18) it follows that for S12 to be zero there are

only two cases: a) ID I = m. This condition holds only if

o = co., and therefore is that of a modal transmission zero.

b) Z12 = O. Since

it can be easily inferred that between

resonant frequencies UP, co~such that 3

(2!0)

two consecutive

%n (%152) ‘Sw (~#’,2) (21)

there is necessarily a frequency u,= (CJP,w~) such that

z12(cJz) = o, S*2(OZ) =0.

In case of mode degeneracy, (21) should be replaced by

‘gn(:ll$)l$))=sgn‘2”)
In order to find a physical interpretation of this type of

transmission zero, suppose the cavity is excited by a field

incident to the first port at a frequency located between o+

and u~; if (21) is satisfied, the p and q modes will give

place to opposite contributions to the field at the output.

In other words, they interact destructively at the second

port. At the frequency o= u=, whose location between (JP

and ~~ depends also on the contribution of all the other

modes, there is a totally destructive interaction in such a

way that no power can be transferred towards the output.

This type of transmission zero will be called interaction

zero.

For symmetrical nondegenerate structures, because of

(16), (21) becomes

JIf pq1pq2= o (i.e., there is a modal transmission zero at ti~), in (21) the
successivemode must be considered,say, the r mode, such that P,,P,2 #
o.
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Fig. 2. The circular microstrip.

$=cq

i.e., if two consecutive resonant modes are both even or

odd, an interaction transmission zero is located between

their resonant frequencies.

IV. THE CIRCULAR MICROSTRIP

The first case of the two-port network we have consid-

ered is the circularly shaped microstrip line shown in Fig.

2. The orthonormalized eigenfunctions of (12) are, in this

(22)

where

Lam= ; form=O
form+O

is the Neumann factor; $~. is the nth root of the equation

~J. (x)= O

and h is the substrate’s thickness. Besides the set of

eigenfunctions (22), the eigenfunction corresponding to
kz = () must be considered

E“”=l/rv.

Such an eigenfunction can be obtained from (22) by
putting conventionally

% ‘=0 ‘0”~.”

Equation (22) shows the existence of a pair of degenerate

modes for any m # O. We shall restrict our attention to the

important case of symmetrical structures (wl = wz = w;

131= Oz= 0). Following the procedure described in the pre-

vious section, one obtains for the [Z] matrix elements4

4As a consequence of the hypothesis that the widths of the ports are
much smaller than the cavity’s radius, the arcs /3, and 02 may be
confused with the corresponding chord.

where

()sin mO 2 am
A:. = — (23’)

m9 1 – (m/t~.)2 “

Let us consider the structure’s behavior at the resonant

frequencies of the cavity. The condition of case 2) of the

previous section becomes

COS2mtj+ 1. (24)

Therefore, for generic values of ~ and for m #O, each

resonant frequency corresponds to a modal transmission

zero. On the contrary, if m+= sm (s= O, 1,2,. ..) case 2b)

is verified, i.e., for O small enough, a reflection zero takes

place near such resonant frequencies. This happens for all

the modes of a doubly symmetrical structure (~= m) and,

in general, for the (O,n) modes.

Besides modal transmission zeros, interaction zeros take

place between consecutive resonant frequencies ~~,~, and

~,., such thatsu

sgn (cos ml+)= sgn (cos mz~). (25)

In the doubly symmetrical case (+= T) (31) becomesc

(- I)m’=(- l)m’ (25’)

i.e., an interaction zero is located between the resonant

frequencies of two consecutive modes having both an

even, or an odd, azimutal dependence.

From (25) it follows that transmission zeros can be

located between any pair of resonant frequencies by vary-

ing the angle ~ between the two uniform lines.

Fig. 3 shows the theoretical behavior of the scattering

parameter Islz] of a doubly symmetrical circular micro-

strip versus the frequency in the range 2–18 GHz. (Expres-

sions (23) have been evaluated taking into account the

first 62 modes). This curve has been obtained completely

neglecting fringe effects, i.e., ascribing to the EM model

the physical dimension of the structure and assuming for c

the permittivity of the substrate (alumina, ● =10 Co). The

locations of the resonant frequencies co,fifl are also indi-

cated in the figure. The structure presents two transmis-
sion zeros, which are due to the interaction between the

pair of modes (2, 1)–(0, 1) and (1, 2)–(5, 1), accordingly to

(25’). (The last resonant frequency is not indicated in the

figure, because it is out of scale). Reflection zeros are

located near each resonant frequency, with the exception

of the modes (4, 1) and (1,2) which are very close

together; for the assumed port widths, corresponding to

51f cos mz~ = O, (thus a modal transmission zero takes place at W~z.2)
the successive mode must be considered in (25). See footnote 3.

61t may be noted that in this case the structure behaves as a nondegen-
erate one, since for each k,~~ onfy one of the two degenerate modes can
be excited, both from the input or from the output.
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Fig. 3. Transmission coefficient 1$121versus the frequency for a circular
microstrip (magnetic wall model without effective parameters).

—

–)

\

,,h
Fig. 4. Experimental behavior of the transmission coefficient Is,zl

versus the frequency for the same structure as in Fig. 3. Substrate
material alumina.

50-fl lines, reflection zeros do not take place at these

frequencies.

Fig. 4 shows the experimental behavior of I.slzl for the

same structure as in Fig. 3. The comparison between these

diagrams shows a good qualitative agreement between

theory and experiment LLpto .W 12 GFIz. The disagreement

consists on the one hand in a slight shifting of the reflec-

tion and transmission zero frequencies and, on the other

hand, in lower values of the theoretical Islzl. The latter

fact can be easily explained, since the EM coupling be-

tween the uniform lines and the cavity is, in reality,

stronger than the theory predicts, because the fringing

field of the lines has been neglected. With regard to the

frequency shifting of the two diagrams, it must be ob-

served that the experimental resonant frequencies are dif-

ferent from the theoretical ones, as previously pointed out,

Over -12 GHz, the theory yields to inacceptab~e errors;

the two diagrams do not agree even from a qualitative
point of view. As has been previously noted [7], the

experimental resonant frequencies may differ from the

theoretical ones in such a way that the sequence of modes

-,0L ,.. ”–, rm
. . .

I I I I
!, ,!

I I
,- ,, -;—+

,,.,4

Fig. 5. Transmission coefficient Is,21versus the frequency for the same
structure as m Fig. 3 (magnetic wall model according to the present
theory].

is different in the two cases. Since interaction. zeros de-

pend on such a sequence, their location might be strongly

altered.

The above considerations indicate that account must be

taken of fringe effects both of the lines and of the cavity.

This can be done by ascribing to the lines effective widths

and effective permittivities accordingly, for instance, to

Wheeler [16] or to Schneider [17], [18]. With regard to the

circular resonator, fringe effects depend on the resonant

mode and cart be taken into account through an equiv-

alent model for each mode, accordingly to Wolff and

Knoppik [9]. Expressions (23) should be therefore mod-

ified by introducing an effective port width Weff, an effec-

tive frequency dependent permittivity of the lines C.ff(j),

an effective cavity radius reff and, finally, an effective

dynamic permittivity of the cavity ~dyn,~n(j), which also

depends on the resonant mode.
The results obtained in this way are shown in Fig. 5 and

agree very well with the experiments in Fig. 4. In particu-

lar, one can note that the resonant frequencies of the

modes (4, 1) and (1,2) are now interchanged: the second

transmission zero is therefore due to the interaction be-

tween the (3, 1) and (1,2) modes. This phenomenon is

analogous to the modal inversion in circular waveguides

[19] and could be experimentally verified by means of a

field mapping technique [20]. The residual differences

between the theoretical and experimental magnitudes of

]sl,[ are essentially due to losses, particularly to radiation

losses, which have been completely neglected.

Fig. 6(a) and (b) shows the theoretical behavior of Islzl

versus the frequency for a circular microstrip with $ =

~/2. This structure presents a modal transmission zero at
each resonant frequtm~y of one mode having an odd
azimutal dependence (see (24)), i.e., in the frequency

range considered, of the modes (1, 1), (3, 1), and (1,2). For

~= 7/2, (25) shows that interaction zeros take place be-
tween the resonant frequencies of modes (4ml, nl) –

(4mz, n,) or (4ml + 2, n,) – (4mj i- 2, nz); in the present case
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Fig. 6. Transmission coefficient Islzl versus the frequency, for a circu-

lar rnicrostrip. (a) Theory. (b) Experiment.

there is only one interaction zero between the modes (O, 1)

and (4, 1).

It is easy to verify that, for + < r/2, an interaction zero

takes place between the (O,O) and (1,1) modes. For ~~

7r/2 the interaction zero tends to the modal zero due to

the (1, 1) mode. Fig. 7 shows the theoretical frequency

location of such transmission zero as a function of the

angle I) for a given cavity’s radius. As can be seen, a good

agreement with the experiments is obtained. This figure

shows the possibility of locating a transmission zero at a

given frequency by suitably positioning the output port of

the network,

V. THE RECTANGULAR MICROSTRIP

Another type of two-port planar network consists of a

rectangular central section connected with two uniform

lines (Fig. 8). This structure may be considered also as a

rzl (GHZ

I I I ! I [ I I

6

fii

b

---

5 v

a.
.

4
‘/

,/ ~z

3

2

h = 0.0635 cm

.
= ?0

1 a= O.scm

V“, =V”2 = 0,058 cm

o I I 1 1 I I 1 1

Fig. 7. Frequency location of the first transmission zero presented by a
circular microstrip as a function of the angle between the two ports.

Fig. 8. The rectangular rnicrostrip.

double step discontinuity; on the other hand, for 1<< b it

becomes a stub structure.

Simple calculations yield to the following expressions of

the Z parameters of the structure7

z’, = Z12=

where

u mn i
= cm (wz/l)2+(n/b)2

/ “:
nmvl

n~pi ‘ln 2b
j~i= Cos b n~z > ‘orn+oo

2b

[1, forn=O

7The series over m could be evaluated analytically and equivalent
expressions to those in [1] would be obtained; nevertheless, they are not
suitable for our purpose, since it is necessary to introduce effective
parameters for each resonant mode, i.e., for each term of the series (26),
in the same way as has been done in the case of the circular microstrip.
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.,,.b

1 I I I I 1
,“ ,. 1.! ,6

F , m+,)

(a)

,.,2,..
, c

Fig, 9. Transmission coeffic~ent [S121versus the frequency for a sym-
metrical rectangular microstrip. (a) Theoxy. (b) Experiment.

For symmetrical structures (wl = Wz, j~2,=j~~), as previ-

ously stated, transmission zeros are only of the interaction

type; in particular, if pi = p2 condition (21) becomes

(-l)m’=(-l)m’

i.e., transmission zeros are located between the resonant

frequencies of consecutive modes having both an even

or an odd dependence with respect to the x direction.

Nonsyrnmetrical structures can also present modal

transmission zeros, which are located at the resonant

frequencies um~ such that ~.l = O and j.2 #O, or vice versa.

Fig. 9(a) and (b) shows the theoretical and experimental

behaviom of \,slzj of a symmetrical rectangular microstrip

versus the frequency in the range 2– 18 GHz. Theoretical

results have been obtained by adopting for the resonator

the model suggested by Wolff and Knoppik [9]; the first

400 modes have been retained in (26). The structure

presents four transmission zeros due to the interaction of
the following pairs of r-nodes: (0, 0)<0, 2), (1, 0)<1, 2),

(O, c1-(2, 0), (2,2)-(0, 6). lt is important to note that the

first transnoission zero is located close to the resonant

frequency of the (0,2) mode. Since this frequency is noth-

ing, but the cutoff frequency of the TE~/ mode of propa-

gation in the wider microstrip section, that transmission

zero has been ascribed to the excitation of the TE&l mode

[10]-[12], Such an interpretation is, in our opinion, un-

acceptable. As has been previously pointed out, given the

symmetry of the structure, a resonant mode cannot give

place to a transmission zero, but on the contrary it can

give place to a reflection zero: the (0,2) mode can produce

a transmission zero only through the interaction with

another resonant mode, which is even with respect to the

x direction (i.e., a (2m, n) mode). For a different 1/b

ratio, in fact, this mode does not give place to any

transmission zero, as will be shown later. One may more-

over observe that the (O,2) and (1,0) modes, which are

rather close together, do not give place to any reflection

zero. This is a typical case when two resonant modes

interact together in such a way that no reflection zero

takes place. However, one could verify that if the port

widths would be very small (about 5pm) two reflection

zeros would take place at these resonant frequencies.

The experimental results in Fig. 9(b) agree fairly well

with the theoretical ones until -12.5 GHz; at higher

frequencies there is a little shifting between the theoretical

and experimental resonant frequencies. Moreover, the

effect of the losses becomes appreciable over -15 GHz.

A more accurate and complete model 6f the structure

would therefore require a better evaluation of the reso-

nant frequencies and, at the same time, the introduction

of the losses,

In order to confirm what is stated above with regard to

the (O,2) mode, another structure has been made with

proper dimensions in such a way that this mode is located

between two odd modes. Fig. 10(a) and (b) shows the

corresponding theoretical and experimental results. A,s the

theory predicts, in this case, the (0,2) mode does not give

place to any transmission zero; the three transmission

zeros are due to the interaction between the modes (4, O)

and (2, 2), (3, 2) and (5, O), and (4,2) and (6, O). As can be

noted the theory agrees very well with the experiment in

the whole frequency range 2–18 GHz.

Fig. 1l(a) and (b) shows the theoretical and experiment-

al results for a nonsymmetrical rectangular microstrip.

In this structure odd modes with respect to they axis can

be excited at the second port, but not at the first one, As a

consequenc~, all the (m, 2n + 1) modes give place to modal

transmission zeros. It is worth observing that the first zero

is located at the resonant frequency of the (O, 1) mode,

corresponding to the cutoff frequency of the TE~~ mode

of propagation in the central section. This accounts for

previous observations [ 10]–[ 13] with regard to nonsyrnmet-

rical step discontinuities; in this case, the statement that

transmission zeros are due to higher order modes is cor-

rect, since it is a modal and not an interaction zero. The

structure in Fig. 11 presents also three transmission zeros

clue to the interaction between the modes (2,0)-(0,2),

(1, 2)-(3, 0), and (2, 2)-(4, O). In spite of the complexity of

the frequency behavior of the structure, the theoretical

results may be considered highly satisfactory.
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Fig. 10. Transmission coefficient [s12/versus the frequency for a sym-
metrical rectangular rnicrostrip. (a) Theory. (b) Experiment.
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VI. CONCLUSIONS

A method of analysis of planar microwave structures is

presented, which is based on a field expansion in terms of

resonant modes, The case of two-port networks is consid-

ered, but the extension to N-port circuits is strai@tfor-

ward. The general filtering properties are discussed and, in

particular, the physical nature of transmission zeros,

which has been the subject of several discussions, is clari-

fied. The existence of two types of transmission zeros,

modal and interaction zeros, is pointed out. The first ones

are due to the structure’s resonances, while the second
ones are due to the interaction between resonant modes.

The latter are the only ones present in symmetrical nonde-

generate structures.

Fringe effects are accounted for in a simple way,

namely by introducing in the magnetic wall model effec-

tive parameters for each resonant mode, while other

methods presented until now are limited by the impossi-

bility of taking into account fringe effects in an adequate
way. It is also shown that these effects should not be

neglected, since they can produce a modal inversion and,

consequently, a strong alteration of the structure’s

frequency behavior.

-“”~* . ,. , ,, ,. ,~,,>,
OJ)

Fig, 11. Transmission coefficient \s121versus the frequency for a non.
symmetrical rectangular microstrip. (a) Theory. (b) Experiment.

Several experimental results performed on circular and

rectangular structures are compared with the theoretical

ones deduced by assuming the effective parameters sug-

gested in [9]. A good agreement is obtained, particularly

for the circular microstrips; for rectangular microstrips a

better characterization of the alterations due to fringing

fields would be desirable. To that purpose it is necessary

to adopt a full-wave analysis for calculating the resonant

frequencies and the coupling between the lines and the

resonant modes. This can be done on the basis of some

methods presented in the literature [21]–[23].

Finally, it is worth pointing out that the method could

be also adopted for planar circuits with any geometry, for

instance through a finite element analysis.
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Analysis of Planar Disk Networks
RENE R. BONETTI AND PLINIO TISSI

Abstract—The impedance matrix of a disk n-port is determined with

fringing fields at the disk edge included in the arrafysis. The theory is valid

for both stripffrse and rnicrostrip geometries and is also appffcable to

magnetic substrates. A simple quasi-static approximation to the disk

capacitance is obtained. Applicability to numericaf design is exempfffbxf

with the search for transmission zeros in a reciprocal 2 port. Experimental

results are presented for the l-port and 2-purt disks.

I. INTRODUCTION

P LANAI? NETWORK theory is becoming a powerful

tool for the design of microwave integrated circuits
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[1]-[4]. When compared to other physical structures,

planar networks offer the designer considerable freedom,

due not only to their size and shape but also to the large

variety of devices realizable with simple geometries.

A very simple shape, the disk, has already proven very

useful for the realization of junction circulators and pre-

sents interesting possibilities for other devices.

Well known theories for disk networks on magnetic

substrate [5]–[7] make use of the edge magnetic wall

(EMW) as a boundary condition at the disk edge and,

therefore, exterior fields are not included in the analysis.

With respect to this problem we quote Bosma [8]: “It is

the unsolved problem of the fringing field that makes
numerical design of circulators not yet very spectacular.”

Furthermore, in a recent paper by de Santis [9] transitions

from volume modes to edge guided modes were shown to

be strongly influenced by these fields.
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